Converting a Regular Grammar to DFA $_{\rm Jay \; Bagga}$

1 Regular Grammar to DFA

In this exercise we use JFLAP to convert a regular grammar to a DFA. The regular (right linear) grammar that we use as our example is shown in Figure 1. Input this grammar into JFLAP.

File In	nput Test Convert Help	2
	Editor	
Table	Text Size	
_	0	
LHS	RHS	
S	\rightarrow aA	
S	$\rightarrow bB$	
A	\rightarrow aA	
A	\rightarrow bC	
A	$\rightarrow \lambda$	
В	\rightarrow bB	
в	\rightarrow aD	
в	$\rightarrow \lambda$	
С	\rightarrow bC	
С	\rightarrow aA	
D	\rightarrow aD	
D	\rightarrow bB	

Figure 1: Input Regular Grammar

The algorithm to convert a regular grammar to an FA is straightforward. We create a state for every variable and one extra final state. The state corresponding to the start variable is the initial state. For every production $X \to xY$ we draw a transition from state X to state Y and label it x. For every production $X \to w$, we create a transition from state X to the final state and label it w.

Select Convert to FA. JFLAP creates the states for each variable and one final state as shown in Figure 2.

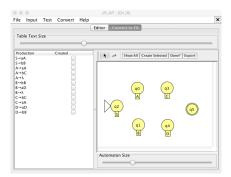


Figure 2: Variables to States

Add transitions corresponding to the productions $S \to aA$ and $S \to bB$ as shown in Figure

3. Repeat this for the remaining productions. The FA so obtained is shown in Figure 4.

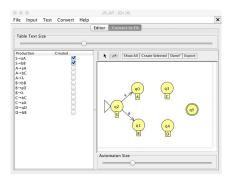


Figure 3: Productions to Transitions

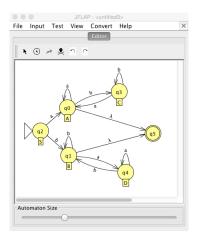


Figure 4: Completed FA

Finally we can use JFLAP to convert this FA to a DFA. The result is shown in Figure 5. What language does this DFA accept? Is this the same language that is generated by the regular grammar you started with?

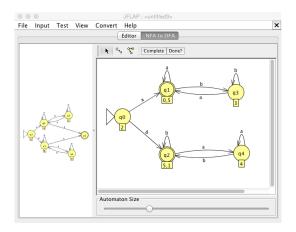


Figure 5: Completed DFA

2 References

- 1. Introduction to the Theory of Computation (Third Edition), Michael Sipser. Cengage Learning. 2013.
- 2. JFLAP An Interactive Formal Languages and Automata Package, Susan H. Rodger and Thomas W Finley. Jones and Bartlett Publishers. 2006